
Software Bills of Materials:
Motivation, Formats, Tools, and Challenges

version: 1.0 (2024-07-01)

Jan Hensel
Bremen, Germany

ja_he@uni-bremen.de

Abstract— An increasing awareness of threats to the
so-called “supply chain” of software has spurred rapid
developments in the area of software bills of materials
(SBOMs), including regulatory efforts to mandate them.
This paper not only explains what SBOMs are, both ab-
stractly and in the context of their role in increasing the
security of the software supply chain, but also provides
a brief survey of concrete SBOM formats, discusses the
processes involving SBOMs, and explores some of the
tools that facilitate SBOM use today.

Index terms—SBOM, Supply Chain, Security, SPDX,
CycloneDX

I. Introduction

When a new vulnerability is discovered in a software prod-
uct it will mostly be corrected quickly, ideally even before
the vulnerability information itself is made public. But even
a timely fix does not guarantee that all users of that product
are also supplied with said fix; this can be dependent on inter-
mediaries (e.g., software vendors) and the users’ diligence to
stay up to date. This issue is far greater still when the software
product is a library or package that other products depend on,
as now the list of intermediaries from whom action is required
grows. Especially when the dependency is ubiquitous, as was
the case with the Log4Shell vulnerability discovered in the
Java logging framework Log4j, the issues’ scale is exacerbated
even further, as it now impacts an exponentially broader set
of users. All of these users, be they administrators or main-
tainers, for example, now must discover whether they are im-
pacted by the vulnerability and, if so, take the necessary steps
to update; possibly, they then also have to notify their respec-
tive users (say, they offer a service) that there was a chance of a
compromise to their service quality (perhaps their data’s con-
fidentiality was compromised), who now have to take steps of
their own. Clearly, this is a recursive problem with both po-
tentially severe real-world consequences and a large amount
of human intervention required; accordingly, there are efforts
to automate these processes by their respective parts.

One such part is the question of “What is in this thing?”,
asked to answer the larger question of “Am I affected by this

vulnerability?” For example, an administrator may wonder
which, if any, of the myriad services on their machines include
the Log4j dependency, even if only transitively. They may then
wonder about the version of Log4j that is included in the ser-
vice binary, or perhaps some details as to how it was built to
determine, whether they need to bring this service up to date.
This example shows both the potential for automation in this
process of vulnerability scanning as well the likely limitations
of that potential: Clearly, knowing which components include
which other components (recursively) would allow answering
the question of “what is in this thing”: if the complete data
to generate a hierarchy of interrelated components and their
version details existed, it would only need to be collated. But
the larger question of affectedness remains yet unanswered,
as there are often complex conditions for exploitability such
as certain configuration details and also as – depending on
the vulnerability – exposure to the vulnerability is often con-
tingent on the specific use of the dependency (e.g., whether
a certain function is ever used, or perhaps whether a certain
function is not used in some case). These are both extremely
relevant questions for mitigating vulnerabilities, but the first
one is the much lower-hanging fruit.

One of the main developments intended to tug on that fruit
is the concept of a software bill of materials (SBOM) [1]. An
SBOM, abstractly, should capture included components and
how they are related as well as some meta-information. The
name derives from the “traditional” bill of materials (BOM) in
manufacturing¹ where a component of a final product, which

¹Some may call this type of BOM a manufacturing bill of materials (M-
BOM)

itself has subcomponents, could be delivered with an attached
document detailing exactly which parts it contains (by part
numbers), such that when a part is found to be defective in
its design anything including it can be identified and, e.g.,
recalled. SBOMs are intended to serve this purpose of trans-
parency in the supply chain as well, merely for software, and
using that knowledge to mitigate any threats to the supply
chain.

This paper will first explore the idea of this “supply chain”
for software and discuss the threats and risks facing it in some

This work is licensed CC BY-SA.

1 2024-07-01

mailto:ja_he@uni-bremen.de
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/

more detail, especially insofar as it motivates SBOMs and how
SBOMs should help with these issues (Section II); It will then
go through the relevant concrete SBOM formats (Section III)
and explore the practices and processes around SBOMs (Sec-
tion IV) before also evaluating some of the tooling that is avail-
able for these processes and for working with SBOMs of the
different formats in general (Section V). Finally, conclusions
to take away from this paper are summarized in Section VI.

II. Background

A major aspect of SBOMs value proposition is enhancing
the security of the current, interconnected software infra-
structure, especially (but not exclusively) with regard to open-
source software in it. This section will motivate that idea but
also highlight some of its limits.
A. A “Software Supply Chain”

Figure 1: A simplified view of the “software supply chain”.

In Section I, there has already been a brief mention of the
so-called “software supply chain”. An actual (“non-software”)
supply chain for physical goods is the (recursive) chain of
everything that is necessary to produce the good, from sub-
components to raw materials as well as any auxiliary goods
and services that are essential to the manufacturing. A soft-
ware supply chain, analogously, can be thought of as the chain
of all the things the software product depends on. In reality
this type of list can become enormous, given enough pedantry
in assembling it, and needs to be limited in granularity (for in-
stance, the office supply of coffee is likely out of scope, despite
what developers may say about how integral it is). A rather
simplistic view would only consider the chain of dependencies
but the most common [2]–[4] interpretation is that of inter-
mediate artifacts being exchanged between actors (developers,
machines) and composited to arrive at either an intermediate
or a final artifact. Figure 1, presents a version of this interpre-
tation, where there is a pipeline from developers through the
various machines responsible in facilitating development and
generating deliverable artifacts, which also may pull in exter-
nal dependencies.

This concept, however, is best taken as a shallow metaphor.
[5] A supply chain for a physical good produced by a com-
pany will note the dependency on other physical goods that

are integral to the production of the main product. In contrast
to physical supply chains, in the world of trivially copyable
software a big part of software vendor’s provided value is ob-
viously not in shipping another copy of their library, but in
promising a certain quality and in continually keeping their
product up to date for their dependents to rely on. Further,
for the production of physical products the sourcing of depen-
dencies is supported by contracts, where the producing com-
pany purchases clearly specified subcomponents, raw mate-
rials, etc., from its suppliers. This is not the case in the mod-
ern software world, where almost any product significantly
depends on open-source code, which is ubiquitous [6], from
apps all the way to the components driving modern cars, as
anybody who takes a closer look at the relevant attribution
and license reproductions by the manufacturer can also tell.
Clearly, in this context, there is no contractual agreement for
the delivery of the open-source code to the proprietary vendor,
nor between interdependent open-source projects; their use is
governed by whatever license terms apply, and the following
excerpt from the MIT license [7] clearly sets the terms of that
agreement:

“THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY
KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE
AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.

Thus, while some widely-used projects may generally act as
responsible software vendors, offering channels for reporting
vulnerabilities, responsibly resolving those quickly, and dis-
closing them once fixed, this is not the case for all open-source
projects; far from it! In any case, although the comparison
to other supply chains may be tenuous, the “software supply
chain” is certainly a useful descriptor for modern software
products’ dependence on externally developed components all
the potential issues that come alongside the undisputed ben-
efits.

Considering this supply chain, there are two main questions
that arise regarding a software artifact: what is in this thing,
and where did this thing come from? These questions corre-
spond to the concepts of provenance and pedigree:

Provenance Information about the life cycle of an artifact,
from its inception to its current state.

Pedigree Information regarding the constituent parts of
an artifact.

In Figure 1, the presented view of the software supply chain
is partitioned into provenance (blue) and pedigree (red). The
developers and the various machines involved in storing and

This work is licensed CC BY-SA.

2 2024-07-01

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/

processing the software are part of the answer to the question
of provenance. The intermediate artifacts, then, are the answer
to the question of pedigree.
B. Threats on the Supply Chain

Considering the model of the supply chain in Figure 1, some
threats are clearly identifiable. Any compromised machine in
this chain represents a potential compromise to the integrity
of the final product as well as its availability. For example, the
VCS host being compromised would also threaten potential
confidentiality of the code. Of course, developers can also be
compromised and may, e.g., exfiltrate confidential code or in-
ject of malicious code, threatening integrity. Thus, they also
present an attack vector.

One major risk factor of a modern software product is, of
course, the large set of external dependencies it will likely
have and the potential for vulnerabilities they incur. Consider,
for instance, the 2014 Heartbleed [8] vulnerability. This bug
in OpenSSL’s TLS implementation allowed attackers to read
server memory, including all sorts of secrets. While it was
introduced in 2012 and publicized in 2014, it took an unrea-
sonable time to resolve and likely still affects some machines
to this day. One worrying datapoint was, for example, a 2017
report by Shodan [9] which indicated that nearly 200,000 de-
vices remained exposed by the vulnerability; two years later,
over 90,000 devices reportedly [10] still remain affected. These
numbers clearly indicate a slow response to a critical issue.

As another example, consider the widely-publicized 2021
Log4shell vulnerability [11] in the popular Log4j Java logging
library. Here, if an attacker is able to influence the contents of a
log message, they can use a specifically formatted² message to

²containing a JNDI URL, to be exact

ultimately achieve a remote code execution, as long as certain,
common, configuration conditions are met. [12] Log4shell af-
fected a significant number of software products, as the deluge
of scanners developed for it also attests. [13] And this sheer
number of scanners also indicates that users and vendors did
not have the desired level of insight into their software sys-
tems, having to rely on these external tools which, present an
attack vector all of their own.

As US-president Biden’s 2021 executive order [14] states it:

“The development of commercial software often lacks
transparency, sufficient focus on the ability of the soft-
ware to resist attack, and adequate controls to prevent
tampering by malicious actors. There is a pressing need
to implement more rigorous and predictable mechanisms
for ensuring that products function securely, and as in-
tended.

And the US government should be keenly aware of these
threats. In late 2020, it became known publicly that US com-
pany SolarWinds was compromised by malicious actors, go-
ing back as early as October 2019, specifically in its Orion
software, which had malicious code injected into it. [15] So-
larWinds was supplying Orion to many customers, including
parts of the US government, who used the software to moni-
tor network infrastructure. In early 2021, the US government
disclosed that 9 federal agencies were compromised, alongside
100 private sector companies. [16] In the conservative word-
ing of the US deputy national security advisor, it took “an ad-
vanced persistent threat actor, likely of Russian origin” [16]
who Microsoft hypothesize to employ “at Least 1,000 Engi-
neers”, [17] Mitigations employed and precautionary steps
taken for such an attack must be equally as broad, a scale at
which traceability is crucial.

The mode of attack against SolarWinds should also be
noted: As they had compromised the build system, the attack-
ers managed to inject code into the trusted software during
the build step, the compiled software then being signed by
the vendor and thus trusted by customers. [18] In his Turing
Award lecture Ken Thompson walks through a possible injec-
tion of malicious code that mere analysis of source code could
not detect, as it is the compilation step at which the code is in-
jected. He poignantly titled this lecture “Reflections on Trust-
ing Trust” [19] and his thoughts remain relevant: there is no
way to be sure of the absence of a vulnerability and trusting a
software supplier also implies trusting their trust, which one
must be aware of.

Threats that may undermine that trust can be more obscure
still: the Rowhammer bug can be used to flip bits in memory,
Spectre and Meltdown are vulnerabilities in the speculative ex-
ecution engine of many modern microprocessors that effec-
tively allow unauthorized read-access to memory. These ex-
amples show the depth of information that may become nec-
essary to trace the possible impacts of a compromised machine
and underscore the extent of security related threats to the
supply chain: machines or actors could be compromised, de-
pendencies could have backdoors added to them, and simple
human error while programming could cause vulnerabilities
to crop up.

But there are further threats as well, such as end-of-life
cases of crucial dependencies or compliance issues³ and, the

³Consider the case of a country being newly sanctioned, such that now
it is no longer legal to use software components supplied by companies
from that country. This could obviously force a rerouting of the supply
chain to exclude any such components, which constitutes a “threat”.

ever-present worries about license compliance that – though
fairly static – can still pose a major threat to the supply chain.

Ultimately, it comes back to trust. Unavoidably, trust is
given to the producers of microprocessors and DRAM units as
well as the organizations and individuals who produce neces-

This work is licensed CC BY-SA.

3 2024-07-01

https://en.wikipedia.org/wiki/Java_Naming_and_Directory_Interface
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/

sary software. Trust must be given to employees who, in turn,
put trust in their favored locksmith and the manufacturers of
their IoT devices; trust is also given to open-source maintain-
ers who cannot possibly verify completely, for instance, the
originality of contributions they receive and instead must rely
on trust to some extent. There is no way around some trust,
and no surefire way to elide any possible threats that breaches
of that trust might pose; but there are major gaps of verifiabil-
ity and traceability in our current world of supplying software
to each other and this is precisely where SBOMs should help.
C. The Case for SBOM

The use of SBOMs is directly motivated by the prevalence of
these threats. Considering them each, there are two main ar-
eas of knowledge necessary to confidently tackle them: what
issues exist and do they affect the product? For instance, to
confidently eliminate concerns about dependency-caused vul-
nerabilities in a product, we would need to know both which
vulnerabilities do dependencies bring and which dependencies
are included and how are included dependencies configured and
used? It is, of course, impossible to conclusively answer the
first question, but new vulnerabilities are discovered daily and
there are existing mechanisms⁴ for automatically collating and

⁴These are, necessarily, imperfect as well; more on them in Section IV.B.

leveraging this information⁵. However, the second question,

⁵As will also be discussed, in detail, in Section IV.B.

whether a product is affected by a vulnerability, is sometimes
much less straightforward to answer. The same seems true,
e.g., for license compliance issues: license compatibility issues
are explored at length and, while there is always the potential
for a shift in legal interpretation, the much bigger issue is, yet
again, the second question: what is integrated, in which way is
it integrated, and how is it licensed? To summarize: there ought
to be gains in threat mitigation to be made by helping answer
questions of provenance and pedigree of software products.

Figure 2: SBOMs in the “software supply chain”, simplified.

As hinted at in Section I, SBOMs are intended to aid pre-
cisely with this: for a given software artifact they can convey
which components it contains, which sources went into gen-
erating it, which tools were involved to assemble it, and which
machines were involved. With this information, reacting to a

newly disclosed vulnerability or a report of a compromised
system becomes a less uncertain process, as the SBOM pro-
vides the majority⁶ of information needed for seeking out po-

⁶That there are always complex conditions even the most advanced
SBOM format may not always be able to flexibly express is an issue also
hit upon in Section IV.C.

tentially affected artifacts. How they may fit into the previ-
ously established “supply chain” view is shown by Figure 2.

Irrespective of their supposed merits, SBOM use may also
simply become the status-quo, especially as there are regula-
tory efforts to mandate their use. For instance, the previously
cited executive order [14, Section 4: Item e.vii] has SBOMs
listed as one of the key approaches for improving security and
sets the stage for mandating their use for government con-
tracts, which follows up on a failed 2014 US-congressional bill
[20]. On the European side, the Cyber Resilience Act (CRA)
proposes “regulation on cybersecurity requirements for prod-
ucts with digital elements” and is currently brought forward
by the European Commission. [21] The German BSI⁷ issued a

⁷The Bundesamt für Sicherheit in der Informationstechnik is the federal
office for information security in Germany.

technical report [22] which outlines requirements of SBOMs
and recommendations for their use, in order to support even-
tual compliance with the CRA. [23] The following section will
detail what an SBOM could and should contain, taking this re-
port into account.
D. Contents of SBOMs

In order to mitigate these threats as outlined an SBOM will
need to hold certain information. At its core, an SBOM is a
set of components which are related to each other, generally
forming some sort of tree structure or directed acyclic⁸ graph

⁸There is really no reason that it must be acyclic, but it would com-
monly be the case when the SBOM represents interdependent software
packages, as dependency cycles usually are discouraged and often out-
right made impossible.

(DAG). It will typically be about something, e.g., a specific
piece of software which anchors this graph.

SBOMs are a concept, though, rather than a specific format.
In any context in which such documents are critical, there
must be some basic set of mandatory information. This is also
the case for the cybersecurity environment which both regula-
tors ([14], [21])) and some industry players seem to be push-
ing for, and indeed there are numerous overlapping specifica-
tions and suggestions on minimum requirements for SBOM
contents. [22], [24])

In Table 1 the similarities and differences between two re-
quirements documents by governmental organizations, the US
NTIA and the German BSI, are compared with each other.
An obvious note is the omission of the license requirement
on the American side, where a license field is only “recom-
mended”. [24] It is also important to note that while the NTIA
states some additional fields (not listed in the table) as “recom-

This work is licensed CC BY-SA.

4 2024-07-01

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/

⁹The entries written in this column in italics are the author’s transla-
tions of the German wording from [22].

NTIA BSI⁹

SB
O

M Author of SBOM Data Creator of SBOM

Timestamp Timestamp

C
om

po
ne

nt

Supplier Name Creator of the Component

Component Name Component Name

Version of the
Component

Version of the Component

Other Unique Identifiers
If unique identifiers exist, BSI

requires them, listing them under
“additional” fields

Dependency
Relationships

Dependencies from other
Components

License

Hash-value of Executable
Component

Table 1: The minimum elements of an SBOM, according to
NTIA and BSI, and how they correspond to each other.

mended for consideration”, while the BSI frames the minimum
elements listed here as those that any SBOM will certainly
have, but requires some additional fields (URIs of BOM, Code,
Executable, additional Hashes, and unique IDs) when they ex-
ist, i.e., they must not be omitted. These requirements hint at
the future shape of SBOMs, at least as they will be required by
governments.

To summarize, an SBOM must have some meta-information
about the document itself associated with it, as well as the
information about the purpose of the document. And under
this broad definition, an SBOM can describe a broad variety
of things, not merely software components in the narrowest
sense, which might called a Source SBOM or a Build SBOM,
depending on whether it describes sources themselves or a
package thereof. Besides these, they can describe later / higher
stages in the deployment of a product, such as its deployment,
which would be called a Deployed SBOM. Before deployment,
sources may be analyzed, in the course of which an Analyzed
SBOM might be created. This analysis, or the compilation, or
many other steps, might be performed on other deployed sys-
tems, which may in turn be described by Deployed SBOMs, and
so forth. These terms are descriptors of the lifecycle phases
which an SBOM can describe, terminology also used, e.g., by
the BSI [22].

Much more important than these terms, though, is the in-
tuition of this chain of knowledge, as it may be thought of: a
crucial aspect of SBOMs’ informational value is that this value
compounds with the coverage it has over the real-world chain
of components that are involved in creating the software prod-

ucts we all use. Having a description of the sources 𝑆 of a
deployed product, and then descriptions 𝐷1 through 𝐷𝑛 of
every dependency with which 𝑆 is compiled into binary exe-
cutable 𝐶 , is certainly desirable, e.g., from a security auditing
perspective, but there is at least one glaring omission in the
chain of production for 𝐶 that should make it very hard to
trust any description of 𝐶 which may be given: there is no
information about the system that compiled 𝐶 from 𝑆 and
𝐷1,…,𝐷𝑛; who is to say whether a trustworthy, audited com-
piler was used, or a third party managed to inject their own
malicious code into the build process? Having information on
this machine would dramatically decrease uncertainty about
𝐶 , understanding of course, that any level of detail in descrip-
tion could always have errors or omissions.

Understanding even these intricacies, and understanding
the concept in general, there is an obvious question: how is
this abstract concept expressed for real-world use, today? The
answer, of course, comes via the various formats that are in
use, which the next section will discuss.

III. Formats

SBOMs can come in many formats and encodings, some
clearly specified in detailed documents, others born of neces-
sity. Understanding their properties is important to discuss the
use of SBOMs practically and to make an informed decision on
these formats, as well as on associated tooling and processes.
In this section, the most prominent formats will be discussed,
both to understand how well they serve the requirements of
SBOMs outlined previously but also to provide a background
for the later sections.

First, the two most relevant formats, SPDX and CycloneDX,
are discussed, in Section III.A and Section III.B, respectively.
They are, for instance, the chief formats mandated¹⁰ by the

¹⁰Although, this mandate may be broadened to include other formats,
as [24] states.

NTIA [24]; next to them, the NTIA also featured SWID,
discussed here in Section III.C. Lastly, other formats are dis-
cussed, in Section III.D.
A. SPDX

The Software Package Data Exchange (SPDX) an open stan-
dard under the stewardship of the Linux Foundation, first pub-
lished in 2011 and most recently revised (with version 2.3 [25])
in 2022.

Initially, SPDX was created in order to deal with license-
compliance issues in open-source software and the project
still presents itself as “first and foremost” dedicated to solving
these issues. [26] The first association many may have with
the project is the extensive and unambiguous license list¹¹ it
maintains.

¹¹See https://spdx.org/licenses/.

This work is licensed CC BY-SA.

5 2024-07-01

https://spdx.org/licenses/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/

But from this motivation, SPDX has been created as a gen-
eral format to describe BOM data. An SPDX document always
contains meta-information about itself, as well as blocks for
package information, file information, snippet¹² information,

¹²The term “snippet”, in this context, refers to a piece of code. This
could, for example, be the code for single function, a types definition and
its method implementations. Especially in projects with a long history of
contributors who may have copied over pieces of code from elsewhere
that may be subject to their own licensing terms, this concept can be nec-
essary to track.

and more. Elements listed in these blocks are put into relation
with each other in separate relationship blocks, where blocks’
unique identifiers (SPDXIDs) are related to each other; this con-
cept is taken so far that, e.g., the package that a document
describes does not have to be the first block described in the
document, but that anywhere in the document it is stated that
the document (which has its own SPDXID) has a DESCRIBES re-
lationship with the package block (given by its SPDXID).

An SPDX document can be expressed in various encod-
ings. When expressed in the so-called “tag/value”-format, doc-
uments are blocks of tags, colon-delimited from their (poten-
tially multiline) values, where each block corresponds to a
type, such as the ones listed previously (e.g., package infor-
mation). More familiar and perhaps interoperable encodings,
such as JSON or YAML are supported as well, in which case,
for the most part, the structure of independent blocks with
unique identifiers separately related to each other stays the
same. It is even possible to express SPDX documents as XLS
spreadsheets.

After more than a decade of development SPDX continues
to be a very capable and well-supported SBOM format, as its
inclusion by BSI and NTIA [22], [24] testifies.
B. CycloneDX

The other major SBOM format that is commonly mentioned
in the same breath as SPDX, is CycloneDX (sometimes, but
rarely, abbreviated as CDX). It is an open specification as well,
and backed by the OWASP foundation. CycloneDX was cre-
ated in 2017 [27] and had its most recent version in 2023, with
version 1.5. [28]

CycloneDX takes a different approach than SPDX, as the
project notes: [29]

“CycloneDX builds on top of the work SPDX has accom-
plished with license IDs, but varies greatly in its approach
towards building a software bill of material specification.

For instance, while relationships can also be specified sepa-
rately from the component data itself, they can also be in-
cluded directly, such that instead of expressing that 𝑋 and 𝑌
have a “depends on” relationship, the information block for
𝑋 can simply have its dependency 𝑌 listed. In CycloneDX

as well, these relationships are usually expressible: depen-
dency relationships are given by the top-level dependencies¹³,

¹³See https://cyclonedx.org/docs/1.5/json/#dependencies.

constituent parts of the overall subject are expressible via
components¹⁴, recursively, other compositions being express-

¹⁴See https://cyclonedx.org/docs/1.5/json/#components.

ible in compositions¹⁵, and relationships such as “built by”

¹⁵See https://cyclonedx.org/docs/1.5/json/#compositions.

can be given in formulation¹⁶. Further, CycloneDX allows ex-

¹⁶See https://cyclonedx.org/docs/1.5/json/#formulation.

pressing the lifecycle phase of the SBOM, much as discussed
in Section II.D, supporting even user-specified phases for or-
ganizations to fit their internal processes more closely. [30,
pg. 13]

And there are more significant differences between SPDX
and CycloneDX still. CycloneDX, in its current version 1.5,
does not support snippets, which SPDX has supported for a
long time. However, CycloneDX does plan to support snippets
eventually [31] and the project also recently (in version 1.5)
added support for another feature which was missing in com-
parison, annotations. The impression is that of a younger pro-
ject that moves at a faster pace than SPDX.

As CycloneDX is the other specification both BSI and NTIA
name [22], [24], it is a fairly safe choice in the medium-term
for complying with regulations.
C. SWID

Software Identification Tags (SWID tags) are an interna-
tional (ISO) standard defined by ISO/IEC 19770-2:2015. SWID
tags were created with the primary goal of aiding in software
asset management (SAM), but they can also be used as a for-
mat for SBOMs, as their inclusion by the NTIA [24] under-
scores.

Syntactically, a SWID tag is an XML document that provides
identifying information and metadata about a software prod-
uct installed on a system. Semantically, its purpose is to be a
clear identifier about a certain version of a product.

SWID is a sensible format, but when contrasted with SPDX
and CycloneDX, it may not be as good a choice in the supply
chain security context going forward. SWID tags were primar-
ily designed for the software asset management (SAM) use case;
while SPDX seems slower to evolve compared to CycloneDX,
SWID is completely unchanged since 2015 [32]. SWID tags
may not lend themselves as well to being consumer-generated
(as opposed to producer-generated) and have a much stronger
focus on SAM use cases such as tracking license information.
And while the NTIA included the format in its recommenda-
tions [24], it is absent from the guidance of the BSI, published
two years later [22]. This omission seems likely to indicate
SWID’s diminished relevance in the SBOM space.

As a final example of a concrete specification, Concise Soft-
ware Identification (CoSWID) tags are, in a nutshell, the binary,

This work is licensed CC BY-SA.

6 2024-07-01

https://cyclonedx.org/docs/1.5/json/#dependencies
https://cyclonedx.org/docs/1.5/json/#components
https://cyclonedx.org/docs/1.5/json/#compositions
https://cyclonedx.org/docs/1.5/json/#formulation
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/

space-efficient counterpart to the plain-text and verbosely-
XML encoded SWID tags. CoSWID tags are defined in the
quite recent RFC 9393 [33] but will not factor into later dis-
cussions on tooling due to their recency and the resulting lack
of support for it in mature tooling.
D. Miscellaneous Formats

But not only these standardized formats fit the idea of an
SBOM, which is to describe software and perhaps hardware
components and their relationships.

In a way, the data encoded in a Go go.mod file or a Rust
Cargo.toml file is already a sort of SBOM, not for a concrete
distributable version of the product, but perhaps for the prod-
uct in general. The lockfiles (e.g., go.sum, Cargo.lock) then
have the information for a specific state of code. Certainly
even fairly basic tools using these data are then to be con-
sidered SBOMs, such as GitHub’s dependency graph feature,
which shows a repository’s dependencies (as inferred by the
content of such package manager meta-files). And many mod-
ern languages have a similar concept of package management
either as enforced or as de-facto standards, so Node.js projects
(package.json, lock.json), Dart projects (pubspec.yaml,
pubspec.lock), and many more can be supported by such
tooling.

Further, SBOM data has been useful to necessary for at least
some people and organizations for a long time. Accordingly,
long before any of the current SBOM standards and practices
were formalized, spreadsheets were (and often still are) used
for tracking the current state of dependencies that a certain
product used or needed.

And even in this era of hopefully-sensible standardized for-
mats, many tools still support their own formats as well. Of-
tentimes this is preferable, when the data is presented directly
to a human, rather than the next machine in line; here, aligned,
perhaps colored, or otherwise decorated formats may make
the most sense.

IV. Practices and Processes

The previous sections clarified the concept of an SBOM and
gave an overview of the concrete formats that allow express-
ing it. In this section, this foundational knowledge is prereq-
uisite for understanding the processes which are supposed to
ultimately leverage SBOMs in order to improve, for example,
supply chain security. First, however, it is also important to
understand what operations are common on SBOM data, not
only to understand the discussion of these processes in Sec-
tion IV.C, but also to understand the categorization of tools
further on, in Section V.
A. Operations

The first question that must be answered, in order to arrive
at any working SBOM-based processes or run SBOM-based

analyses, is how to arrive at an SBOM. In other words, it is the
issue of SBOM generation.

To some developers, the issue may seem trivial: for a Go
project, simply look at the package-management files (go.mod
and go.sum), start with those dependencies, and retrieve de-
pendencies recursively¹⁷ until complete. Unfortunately, how-

¹⁷In fact, the lock-file should already be complete.

ever, the issue is not as straightforward in all cases. This com-
piled Go program might depend on non-Go dependencies such
as OpenSSL; it will most likely depend on glibc¹⁸ as well. And

¹⁸See https://www.gnu.org/software/libc/.

then, who is to say that it doesn’t actually rely on an arbitrary
binary file which it loads and executes? Clearly, there are cases
in which a complete SBOM can not be generated by a gener-
alized tool.

And then, there are languages and ecosystems in which
even the initial assumptions about a package-manager do not
hold. We may speak of package-managed and package-un-
managed environments, where Go or Rust (at least de-facto)
belong to the former category, while C and C++ belong to
the latter. A JetBrains survey [34] illustrates the (unsurpris-
ing) state of affairs in these languages: there is neither a de-
facto standard method of package-/dependency-management
in these languages, nor a de-facto standardized build system;
take with that a resulting openness to “unorthodox” ways of
including dependencies and the longer history that some of
these projects have, and you arrive at SBOM generation for C
and C++ based projects becoming a rather messy proposition.

Depending on downstream requirements, if it becomes nec-
essary to deliver complete, self-contained documents, SBOMs
for subcomponents, tools, machines, etc. have to be retrieved
from their reference locations and integrated into one single
document. From this alone, but not only this, at least two
indispensable operations follow: conversion between SBOM
formats and encodings as well as merging SBOM documents
together.

When doing so, however, the organization or person taking
responsibility for the final SBOM would do well to not blindly
trust any tools offering these features, as silent omission of
some information is a real danger, especially in cases where
fields from one format do not quite map to fields of the other.
And whether that omission will get noticed in megabyte-scale
SBOM files depends on how well-equipped this organization
or person is: At the very least, they would employ some tools
of quality assurance, making sure no crucial information got
lost in translation. Further, they will need to be able to inspect
and modify SBOM contents by hand, at least in some cases,
which might be called editing of SBOM data. Finally, for some
organizations it may even make the most sense to build spe-
cialized tools internally for the exact verification of data or
the exact conversion or merging functionality that is desired.

This work is licensed CC BY-SA.

7 2024-07-01

https://www.gnu.org/software/libc/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/

In any non-trivial organization, the management of
SBOMs will also be a crucial operation. Work on SBOMs pub-
lished by the organization may not only involve a mix of au-
tomatic generation and completion by humans familiar with
the intricacies of the product, but also involve non-technical
personnel, such as the legal department in regards to licens-
ing matters. For many companies, internal processes require
human sign-off to clarify who is responsible for a certain part
of the information; it may be required for formats and tools
to support a staged workflow where SBOMs are processed in
stages and – perhaps even in their sections and subsections –
can be moved along a workflow, such as “needs review”, “un-
der review”, “signed off by …”. Such a system should ideally
also allow the publishing of SBOMs, to customers or in gen-
eral, and facilitate their cryptographic signing and signature
verification. Lastly, it seems likely that such a system would
have a graphical user interface, for example as a web applica-
tion; as such, it would make sense to integrate in it the results
of any further analyses, to give a wider range of people, in-
cluding management, insight into the state of a product.

The main kinds of these analyses, then, are those that ad-
dress the threats outlined in Section II.B. One, perhaps rather
simple, analysis is ensuring that no component comes from
a banned supplier or originates in a sanctioned country, so
as not to violate any internal policies, customer-mandated re-
quirements, or regulatory obligations. Similarly, licenses of all
included components can be analyzed for compatibility¹⁹, in-
cluding how they depend on each other²⁰.

¹⁹This is, of course, only to the most current legal interpretation of
these licenses, which requires lawyers to correctly understand judge-
ments on these issues.

²⁰For instance, it is commonly accepted that MIT-licensed components
can be directly included in compiled executables, while GPLv3-licensed
components may only be linked against, i.e., “referenced” by the compiled
executable and not “part of it”, as such.

B. Vulnerability Scanning

As pointed out in Section II.B, one of the main motivators
for SBOMs is the automatic management of vulnerabilities
in their impact on a given software component. This section
will give an overview of the problem of vulnerability analy-
sis and explain where SBOMs fit into that process, how they
help, and , what the problem’s requirements tell us about the
SBOMs necessary informational value.

A complete SBOM should at least list all constituent parts
of the component; keeping track of newly-discovered vulner-
abilities for each of all subcomponents is a necessity to secur-
ing the overall software component.

One way to track vulnerability information is through the
National Vulnerability Database (NVD). It is a repository of
vulnerabilities that have been reported and analyzed by the se-
curity community and is maintained by NIST. For a long time
the NVD has offered publicly accessible data feeds, and more

recently APIs²¹, of vulnerabilities found in software products.

²¹In fact, the feeds are being deprecated by the end of 2023 in favor of
the APIs.

Through these data sources, vulnerability data can be retrieved
for certain software components.

To query this database for information relevant to a certain
product or component, one could filter by a Common Platform
Enumeration (CPE) identifier. These are relatively brief strings
of characters that allow to express a software platforms iden-
tity in as much detail, as is desired. For instance, here are
strings representing OpenSSL in version 0.9.2b and an older
version of the SerenityOS desktop operating system, respec-
tively:

cpe:2.3:a:openssl:openssl:0.9.2b:*:*:*:*:*:*:*
cpe:2.3:o:serenityos:serenityos:2019-12-30:*:*:*:*:*:*:*

The data returned are so-called Common Vulnerabilities and
Exposures (CVEs), specifically, their identifiers; some of these
were already cited in Section II. A CVE represents a specific
vulnerability in a specific software product (as identified by
CPE), describes what the vulnerability is, how it may be ex-
ploited, how it should be mitigated (crucially, which version
fixes the vulnerability). CVEs are also assigned severity scores
in the Common Vulnerability Scoring System (CVSS). These
scores should help prioritize mitigation work, but have also
been criticized [35] for incorrect or inflationary severity es-
timates.

The NVD certainly provides very useful information and
should be a core data source for any vulnerability analysis
performed, but it does have its downsides as well. Many com-
ponents, for example, are not identified; the now commonly
known Log4j has its own CPE identifier, but other similar
packages in other languages (for example the zerolog²² pack-

²²See https://pkg.go.dev/github.com/rs/zerolog.

age for Go), are not identified. Another form of identifier for
software components are package URLs (purls²³); for example,
zerolog could be identified by the following purl:

²³The non-capitalization of “purl” is commonly used for purls, perhaps
also serving to distinguish from Persistent URLs (PURLs).

pkg:golang/github.com/rs/zerolog@v1.26.1

While for CVEs there is a central body assigning identifiers,
purl instead relies on its specification reglementing how iden-
tifiers are formulated for identifier coherence.

The pace of the NVD has also been criticized, specifically
that vulnerabilities were frequently published through other
channels (such as social media platforms) before the NVD
added them, sometimes with delays of several days. [36] Pro-
jects for which CVEs were filed have also found fault with the
accuracy of the data provided, and, again, the slow reaction to

This work is licensed CC BY-SA.

8 2024-07-01

https://pkg.go.dev/github.com/rs/zerolog
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/

corrections. [35], [37] For the vulnerability analysis of many
projects it is therefore advisable to augment the NVD with
other sources of data.

One such alternative source is the GitHub Advisory Data-
base²⁴ which identifies vulnerabilities by separate identifiers,

²⁴See https://github.com/advisories.

the GitHub Security Advisory (GHSA) identifiers, and allows
scoring by CVSS. GitHub sources the data for this database
from multiple databases besides the NVD, such as the Go Vul-
nerability Database²⁵, the Rust Security Advisory Database²⁶,

²⁵See https://pkg.go.dev/vuln/.
²⁶See https://rustsec.org/.

or Google’s list of OSS-Fuzz-found vulnerabilities²⁷. More im-

²⁷See https://github.com/google/oss-fuzz-vulns.

portantly though, GitHub also includes community contribu-
tions²⁸ to the data, allowing developers to declare vulnerabili-
ties in their own packages. [38]

²⁸See https://github.com/github/advisory-database/pulls.

To many consumers of CVE data, the GitHub Advisory
Database may be preferable to the NVD data. [39] For one,
consuming from the NVD can be somewhat confusing as the
data is actually, in a way, downstream from the CVE List²⁹ of

²⁹See https://www.cve.org/.

the MITRE Corporation³⁰, but enriched with further data, such

³⁰MITRE is a not-for-profit organization funded, in this respect, by the
US Department of Homeland Security, specifically, the Cybersecurity & In-
frastructure Security Agency (CISA). They began work on the CVE List in
the late 1990s whereas the NVD only came to be in the mid 2000s. [40]

as scoring. [40] Despite this enrichment, as already noted
above, it can be arduous to amend or correct CVE data in the
NVD. GitHub, on the other hand, is usually more flexible in al-
lowing reasonable, well-sourced changes to the CVE data they
ultimately pass on.

Another major part of the value proposition of GitHub’s
advisory database is also its inclusion in the automated tool
Dependabot on the GitHub platform, which notifies develop-
ers automatically of vulnerabilities which potentially affect
their projects. While this inference, from experience, leaves
room for false-positives, this automatic workflow of notifying
developers with a possible mitigation ready to be applied is
clearly very promising approach to lessen the friction for the
necessarily involved developers (those humans! [41]). Unfor-
tunately, though, these features are only available, and likely
only feasible to implement, for the more modern, package-
managed languages and ecosystems.

The GitHub Advisory Database and GHSAs seem to be a
step in the right direction, to ease the friction of vulnerabil-
ity analysis and mitigation as well as to allow sourcing vul-
nerability data directly from developers and other volunteers.
These contributions are possible, in part, due to an open format
specification by the Open Source Security Foundation (OSSF or
OpenSSF): the Open Source Vulnerability (OSV) format³¹ is in-

³¹See https://ossf.github.io/osv-schema/.

tended to be the standard interchange format for vulnerabili-
ties between different vulnerability databases. Evaluating this
format in detail, however, is beyond the scope of this paper.

Further databases exist. Besides the name for the format,
“OSV” is also frequently used to describe the OSV Vulnerability
Database³², which is perhaps the most immediately usable of

³²See https://osv.dev/.

these databases, due to the quality of the API documentation
and the little introductory blurbs on the homepage. Another
database leveraging OSV formatted vulnerabilities and aggre-
gating them is the GitLab Advisory Database³³, which works

³³See https://advisories.gitlab.com/.

similarly to GitHub’s offering. RedHat also publishes³⁴ secu-

³⁴See https://access.redhat.com/security/security-updates/.

rity advisories. Lastly, some tools, such as cURL³⁵, publish their

³⁵See https://curl.se/docs/security.html.

own security advisories in more or less machine-friendly for-
mats.

To summarize, a vulnerability analysis tool that ingests an
SBOM should, for the contained components, leverage data
not only from the NVD but also from other databases, at
least the GitHub advisory database, likely specializing queries
based on the language ecosystem in question. The retrieved
data may not only be in different formats, but also differ in
detail, quality, and trustworthiness; a tool should account for
this in further processing. Depending on the tool in question,
it may be a desirable feature to apply vulnerability mitigations
to the product automatically. For instance, GitHub Dependabot
can automatically create pull requests to resolve certain pre-
sumed vulnerabilities (usually by updating dependency ver-
sions). However, it is unlikely that such a tool could provide
this feature without having to involve humans and, further,
seems very unlikely from a current state of the information
that impact analysis and mitigation generation could be gen-
eralized sufficiently to aid with most true vulnerabilities. In
the following section (Section IV.C), we will also detail another
approach being taken in this field, VEX.
C. Beyond SBOM

SBOMs are documents, nothing more, nothing less. As such,
SBOMs alone can hardly “guarantee” any measure of security
by themselves, no more than a shipping manifest can guar-
antee the contents of a shipping container. The document is
simply a (syntactically and semantically constrained) medium
for the information; around this, there must exist a process,
just as there exists a process in the shipping industry due to
which a commercial port may then trust a container to contain
harmless rubber duckies rather than explosive chemicals.

This is why the NTIA encouraged [24] the adoption of
“practices and processes” around SBOM actually leverage the
value of these documents. The question then becomes, what
could such a process look like? There are already a few descrip-

This work is licensed CC BY-SA.

9 2024-07-01

https://github.com/advisories
https://pkg.go.dev/vuln/
https://rustsec.org/
https://github.com/google/oss-fuzz-vulns
https://github.com/github/advisory-database/pulls
https://www.cve.org/
https://ossf.github.io/osv-schema/
https://osv.dev/
https://advisories.gitlab.com/
https://access.redhat.com/security/security-updates/
https://curl.se/docs/security.html
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/

tions of such processes, usually referred to as “frameworks”.
One of these is the Supply-chain Levels for Software Artifacts
(SLSA) framework, which will be described with some detail
in the following as an example of such a framework, which
focuses on the security of the software supply chain. Fur-
ther examples are OWASP Software Assurance Maturity Model
(SAMM), which is scoped much more broadly than SLSA,
and the NIST Secure Software Development Framework (SSDF),
which is likely most fitting for suppliers of government soft-
ware products.

SLSA primarily specifies a set of guidelines for different lev-
els of security, with the goal of enabling more trust and veri-
fiability with respect to software artifacts. As of now, these all
relate to the build step of an artifact, but should be expanded
to sources and dependencies in the future. One of the most
obvious insights about any process’s adoption is that an in-
cremental approach is much more achievable than a sudden,
all-or-nothing overhaul. Accordingly, SLSA security levels are
defined such that organizations can work their way up to the
desired level from the so-called level 0, i.e., not delivering any-
thing besides the binary. Table 2 shows a summary of the SLSA
1.0 [42] levels for the build track and their requirements.

Level Requires

Build L0 nothing

Build L1 provenance information

Build L2 signed provenance information

Build L3 hardened build platform

Table 2: SLSA build-track levels.

SBOMs are a good choice to encode the provenance informa-
tion and therefore very useful for SLSA. [43] However, they
cannot directly help hardening the build platform, and while
it should be possible to express the hardening measures taken,
this is not the primary intended use case for the major SBOM
formats. The SBOM may convey the checksums of the data it
is to represent, as generated by the tool producing it, and then
it itself may be signed by whoever is responsible for delivery,
but their diligence in confirming the exact accuracy of all in-
formation may waiver.

Rather than trying to fit all possible information into an
SBOM, it makes more sense to have higher-level documents
that reference these SBOMs, as well as other artifacts, to then
assert statements about those SBOMs and artifacts in a format
that is specifically suited to those assertions. This is where the
in-toto framework³⁶ should be useful: it allows, for instance,

³⁶See https://in-toto.io/.

expressing which steps were run, which sources were used,
the result of a code review, test results, or the configuration
of the compiler that was used. [44] This is why SLSA recom-

mends in-toto as the single suite of formats and conventions,
choosing underlying predicates (such as SBOM for prove-
nance) as necessary. [45]

Tools and concrete processes in this space are still being de-
veloped very actively. [46], [47] Due to this, and due to the
fact that these processes extend beyond SBOM quite signifi-
cantly, these tools are not discussed in Section V; however, an
in-depth assessment of them would be of interest.

SLSA, as a quite abstract framework, recommends a set of
practices for certain “levels” of security. As a concrete frame-
work for expressing and generating the attestation informa-
tion, SLSA recommend in-toto, which in turn supports refer-
encing SBOM, which may encode the provenance information
SLSA requires. In this constellation, SLSA hope to address
some of the areas of improvement which they identify in the
SBOM space: [43]

“• SBOMs currently don’t include or require enough informa-
tion to help users respond to build tampering and attacks
[…];

• There’s no well-established ecosystem to easily distribute
and verify SBOM documents;

• The most common method of generating SBOMs using only
audit tools after the software’s creation can result in less ac-
curate SBOMs.

But even having perfect and trustworthy provenance informa-
tion, even knowing exactly which subcomponents it includes
(i.e., pedigree information), it is often not clear whether a
product is affected by a vulnerability in a certain subcompo-
nent, as already hinted at multiple times in Section IV.B. This
is because exploitability often depends on the configuration of
a component, not merely its inclusion. For instance, the ex-
ploitability of the Spring4Shell vulnerability appearing in the
Spring Framework³⁷ for Java depended on a certain pattern

³⁷See https://spring.io/projects/spring-framework.

taken in the code, using the annotations the framework pro-
vides. In other cases, separate configuration files or even a dy-
namically set configuration may be relevant. Clearly, there can
be no perfect format to convey any possible such condition
(or combination thereof) from one machine to the next; while
there probably still is much to gain by trying to automate these
processes, ultimately, the human in the loop seems unlikely to
become obsolete anytime soon.

To communicate vulnerability information to these humans
and help them identify whether they are impacted by some-
thing and what mitigation measures to take, there exists an-
other concept: Vulnerability Exploitability Exchange (VEX) is
a document format proposed by the NTIA [48] to allow ven-
dors to express vulnerability affectedness (including not being
affected, looking into something, or already having resolved

This work is licensed CC BY-SA.

10 2024-07-01

https://in-toto.io/
https://spring.io/projects/spring-framework
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/

the issue). VEX information is separate from an SBOM, as the
SBOM is static due to its information (such as dependencies or
licensing) being (hopefully) known at its creation time while
VEX information is dependent on security research performed
mainly after the product (and the SBOM) has been published.
When a security researcher raises a vulnerability with a de-
pendency, for instance, a vendor can then publish its status
respective that vulnerability by publishing VEX documents.
These documents may then say that an investigation is under-
way, and, later on, that the product is deemed “not affected”
by the vendor (e.g., due to the use of the dependency).

V. Tooling

This final major section of the paper will give an overview
and evaluation of the tools that are available in the current
SBOM ecosystem to perform the operations discussed in Sec-
tion IV.A, and support processes, such as the ones named in
Section IV.C. The list of tools is necessarily incomplete and
will become outdated quite quickly, as these tools continue to
evolve, new tools are developed, and processes shift. Nonethe-
less, it should hopefully give readers new to the field a good
idea of what tools may suite their use cases. The evaluation
of these tools stems from personal experience since 2021 as
well as dedicated research for this paper and the accompany-
ing presentation. Unfortunately, it is impossible to make such
a section both brief and complete, so brevity is favored and
some tools are therefore omitted. For most of these tools it
also is not possible to make an “apples to apples” comparison
between them, as they often take different approaches, suit
different use cases, and perhaps even complement each other
rather than “competing” for the same exact niche.

Further, it is important to point out that, the practices and
processes are still being developed, shaped, and consensus on
in-practice standards has yet to be determined. Accordingly,
the landscape of tools is shifting and incomplete and it is un-
reasonable to expect the one tool to handle any SBOM needs,
as even the most capable developer making such a tool could
only guess at the SBOM requirements, practices, and processes
to come. Instead, here as well, the Unix philosophy, as quot-
edly stated by Doug McIlroy, applies: [49]

“Write programs that do one thing and do it well. Write
programs to work together. Write programs to handle
text streams, because that is a universal interface.

(emphasis: author)

It seems clear that the first two points, as emphasized, are the
truly crucial points for the SBOM use-case. The universal in-
terface seems more important than the text streams that are
supposed to provide it; perhaps the SBOM formats can stand
in as this interface instead, as they are already meant to be

the universal, interoperable interface between organizations,
people, and tools. Users, at least for now, should look to be
able to compose these tools to have the necessary flexibility in
their SBOM use.
A. Generation

The first operation to tackle, as in Section IV.A, is the gener-
ation of an SBOM for a project. As noted already, it is impos-
sible for a single tool to handle any, arbitrarily complex, pro-
ject or system. That said, for straightforward projects in mod-
ern languages and ecosystems, generation of fairly complete
SBOMs is a feasible problem to solve, and some tools already
do it quite well. Users are nonetheless advised to ensure that
output in content (list of components) and shape (relationship
of components) matches their expectations.

A simple and straightforward example of such a generator
is the SPDX SBOM Generator³⁸, which has no official affiliation

³⁸See https://github.com/opensbom-generator/spdx-sbom-generator.

with the SPDX project. It supports the simple, package-man-
aged use-cases outlined previously (Go Modules, Cargo for
Rust, Maven for Java, …) and generates a correct SBOM from
them, containing all the components, properly identified, in
their correct hierarchical order. However, this tool does not
deal in license information inference; in a language like Go,
where the package-management files do not contain license
data, the concluded BOM will simply (and not incorrectly)
state NOASSERTION for each component’s license information.

An example of a tool which follows a slightly different idea
for generation is gh-sbom³⁹. This tool by GitHub’s own Ad-

³⁹See https://github.com/advanced-security/gh-sbom.

vanced Security organization⁴⁰, is in a few ways emblematic of

⁴⁰See https://github.com/advanced-security.

the current SBOM tooling landscape: it relies heavily on ex-
ternal services (which is by no means a criticism), going so far
as to piggyback on the GitHub CLI tool gh as an extension and
subcommand thereof; it generates CycloneDX and SPDX in
JSON encoding, but of very varying quality with no indication
thereof; but when it works, it works quite nicely.

A user must have authenticated in the GitHub CLI and have
installed this tool. They can then generate an SBOM to stan-
dard output (ready to be piped into jq, for instance) for the
current repository, by default in SPDX-JSON format, but op-
tionally (via -c) also instead as CycloneDX-JSON. This default
is somewhat surprising, as, from limited testing at least, the
generated CycloneDX BOM is more comprehensive than the
SPDX BOM: the SPDX BOM simply includes no package iden-
tifiers, neither purl nor CPE, even though this information is
included in the CycloneDX BOM (and is absolutely expressible
in SPDX, using ExternalRef, for instance). Another symptom
both of this difference in BOM quality as well as of surpris-
ing defaults is the crucial matter of license information: the
tool only produces these when the -l flag is given, and only

This work is licensed CC BY-SA.

11 2024-07-01

https://github.com/opensbom-generator/spdx-sbom-generator
https://github.com/advanced-security/gh-sbom
https://github.com/advanced-security
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/

does so properly for CycloneDX, omitting all but the top-level
package’s license information in the SPDX case.

In its current state, at the very least, this tool is a convincing
demonstration of what inference is possible, even for a very
small tool, with rather quick generation times leveraging the
APIs of a platform such as GitHub and using further external
tools, such as ClearlyDefined⁴¹, which it uses for license infer-
ence.

⁴¹See https://clearlydefined.io.

The perhaps most well-known and popular SBOM genera-
tion tool is Syft⁴². Being developed by Anchore, it is primarily

⁴²See https://github.com/anchore/syft.

portrayed as a SBOM generation tool for container images and
file systems, but it is also capable of generating SBOMs for
software projects, such as source code repositories.

For container images, Syft works well out of the box with
no configuration. For other projects, however, some configu-
ration may be required; here, Syft will usually be invoked to
scan a directory (dir:) and the automatic inference of which
information to focus on can lead to incomplete results, mean-
ing it is sometimes advisable to constrain the used catalogers
or to exclude certain files or directories from the scan. Infor-
mation quality can also vary based on the output format se-
lected; SPDX and CycloneDX each end up having their own
shortcomings, but even the most informative format, Syft’s
own BOM format (JSON encoded), ends up compacting rela-
tionships of transitive into direct ones, flattening the entire
dependency tree into one layer.
B. Conversion, Merging, and Editing

Especially considering that different tools output different
formats and encodings, conversion and merging are indis-
pensable tasks, likely for a long time to come. And while
format-internal conversion between encodings is usually no
problem, converting between even the major formats can lead
to loss of information. There is a plethora of conversion tools
out there; one of the tools mentioned previously, Syft, offers its
own conversion between formats, for instance. The SPDX and
CycloneDX projects each offer converter tools, both between
the formats as well as to format-internally convert between
the various encodings, such as JSON and XML. For merging,
the most prominent tool is the CycloneDX CLI⁴³, but there are
some requirements of the shape of the BOMs.

⁴³See https://github.com/CycloneDX/cyclonedx-cli.

Unfortunately, it is impossible to give any authoritative rec-
ommendation on these tools at this time: the intricacies of
format conversion and which not directly mappable fields get
converted can be complicated to assess reliably in the first
place, but as best practices are currently not even fully devel-
oped, it would be futile. Once the practices have been better
established and thus requirements are clearer, once tools have
matured, then a reliable analysis can be made.

Despite this, there are some tools, even now, that aim to as-
sess SBOM quality. A simple example is eBay’s sbom-scorecard
tool, which generates a simple assessment of the proverbial
boxes a certain SBOM ticks, e.g., how many of the listed com-
ponents have associated license information. Another very
similar tool is sbomqs⁴⁴, which is used to assemble the inter-

⁴⁴See https://github.com/interlynk-io/sbomqs.

esting site SBOM Benchmark⁴⁵. Hopefully, this niche of SBOM

⁴⁵See https://sbombenchmark.dev/.

tools continues to evolve and will nudge other tools and
providers toward providing complete and useful documents.

At least for now, users will likely have to investigate the
type of documents they receive, the type they are to provide,
and inspect the tools they will use closely for matching those
requirements. As pointed out in Section IV.A, at least for some
organizations, it will likely be necessary to edit SBOMs di-
rectly. While SBOMs are ultimately just text files, there must
be appropriate tools to work with them, much like most pro-
grams are simple (collections of) text files and yet there is a
wealth of supportive tooling for programmers to edit them. In
this vein, such tooling for the major SBOM standards could be
very useful.⁴⁶

⁴⁶It is for this reason I have prototyped an SPDX language server im-
plementation, which works quite well for simple quality-of-life things
such as automatically filling out checksums or jumping to definitions /
listing references, but it has not received any work in some time.

Finally, it is not infeasible for organizations that have a real
long-term need for a certain SBOM use case, to develop their
own tools. The CycloneDX and SPDX projects both have good
client libraries in major languages, such as Go, and many of the
other promising projects in the SBOM space are open-source
and permissively licensed, allowing tools to be built on top
of them⁴⁷. Hopefully, those that do, see reason to open-source
these tools as well.

⁴⁷In Go, for example, any package that is not located under internal
is available for inclusion in other projects.

C. Vulnerability Analysis

The process of vulnerability analysis has already been dis-
cussed in Section IV.B, and has the potential (and difficulties)
of an automated or semi-automated management of those
vulnerabilities. In this section, a small selection of prominent
tools in this space are presented in brief.

Likely the most prominent SBOM focused open-source vul-
nerability scanner out there at this time is Grype⁴⁸. Created by

⁴⁸See https://github.com/anchore/grype.

Anchore, it is the partner tool for Syft, but also integrates some
of its functionality.

Grype combines a lot of data sources in its own database;
the code for generating such a database is also made available
by Anchore, in grype-db⁴⁹. Besides NVD data and GitHub’s ag-

⁴⁹See https://github.com/anchore/grype-db.

gregated data, Grype pulls data from the feeds and trackers of

This work is licensed CC BY-SA.

12 2024-07-01

https://clearlydefined.io
https://github.com/anchore/syft
https://github.com/CycloneDX/cyclonedx-cli
https://github.com/interlynk-io/sbomqs
https://sbombenchmark.dev/
https://github.com/anchore/grype
https://github.com/anchore/grype-db
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/

several Linux distributions as well, in keeping with its primary
purpose as a container image vulnerability scanner.

Grype has rather good support for SBOM ingestion (with
the scheme prefix sbom:) and can even add missing CPEs to
the data it is given.

Another solid option in this category is CVE-Binary-Tool.
This CLI tool developed by Intel, despite its name, aggregates
a wide variety of sources for its vulnerability information: it
was initially created to scan binaries, but is also capable of
ingesting SBOM. While its output, by default, is suited to hu-
man consumption on the command line, it can be adjusted to
a more machine-friendly format and ready-to-use CI solutions
such as a GitHub action exist.

To execute cve-bin-tool with an SBOM, the file must be
passed as an argument and the format should also be speci-
fied. It should be noted, that without clear identifiers (see Sec-
tion IV.B) in the SBOM data, such a tool can not easily find
components in the vulnerability data; unfortunately, the tool
does not warn of this fact, though, highlighting the impor-
tance of being aware of SBOM-quality before use.

There are other projects in this vein, such as OSV-Scanner⁵⁰
by Google, which is a direct part of the OSV effort already dis-
cussed in Section IV.B.

⁵⁰See https://github.com/google/osv-scanner.

D. Management

The tools listed so far are scoped fairly narrowly, some of
them only performing a single main task. They can be cate-
gorized as the tools to arrive at a complete SBOM (which re-
quires generation, merging, and conversion) and then analy-
sis of such an SBOM based on external data (by the example
of vulnerability scanning). Anybody planning to work in this
fashion would have to compose these tools themselves; they
might also have to manage lots of SBOMs somewhere or even-
tually deliver SBOMs, which, in a DIY approach would involve
some work and friction as well. Therefore, there are tools that
attempt to cover more of this workflow, which also try to take
on the management responsibilities. These tools can be cate-
gorized as SBOM management tools, and they are an interest-
ing indicator of the possible future direction of SBOM use.

It is difficult, from a current-day perspective, to envision
and design “The Authoritative SBOM Management Suite”. For
one, the best practices such a tool should support and laud are
not fully established and still shifting, as noted multiple times
already. Whoever would be developing this tool would have
to be tapped into multiple industries, know both software pro-
ducers and consumers well, including, ideally, governmental
entities, as well as the large space of open-source suppliers and
consumers; besides all this, they would need the resources to
develop an elaborate tool suitable for multiple use cases and
have the foresight to design it to fit, or be adaptable to, the

next decade of SBOM use. Instead, of course, several tools are
being developed by several organizations, each with their own
goals and incentives.

One upside to attempting to develop such a challenging pro-
ject, however, is the influence it may give over the shape of
things to come. It is unsurprising, then, that there are multiple
companies developing paid products for the overall manage-
ment of SBOMs. One company at the forefront of SBOM ef-
forts is Anchore, which was already mentioned multiple times.
Its offering, Anchore Enterprise⁵¹, is categorized by Anchore

⁵¹See https://anchore.com/platform/.

as an “SBOM-powered supply chain management platform”.
Another platform is that of Cybellum⁵², who focus on the

⁵²See https://cybellum.com/platform/.

manufacturing sector’s various security and risk management
needs. Finally, the perhaps most pure SBOM management in
the commercial space is Cybeats SBOM Studio⁵³. It is, however,

⁵³See https://www.cybeats.com/sbom-studio.

difficult to assess commercial tools, even having had some of
them demonstrated, without expensive hands-on experience;
thus, this incomplete overview of the commercial tools will
have to suffice.

There are, of course, also existing, commercially successful
products which are slowly adding SBOM support. An example
of such a tool is Synopsys’ BlackDuck⁵⁴, a software composi-

⁵⁴See https://www.synopsys.com/software-integrity/security-testing/
software-composition-analysis.html.

tion analysis (SCA) tool touting features from advanced scan-
ning, through vulnerability analysis, to managing all related
data (including SBOM) for customers. For such actors with
their own established market niches, the incentives to support
SBOM may be lower, and the desire for continued customer
lock-in could be a factor in SBOM adoption steps, such as
adopting ingestion before data export.

But there are freely available tools as well! The predomi-
nant tool among them is Dependency-Track⁵⁵, another offering

⁵⁵See https://github.com/DependencyTrack/dependency-track.

from under the OWASP umbrella and closely related⁵⁶ to the

⁵⁶e.g., in its contributors

CycloneDX project. Dependency-Track, despite its name, of-
fers a very broad range of SBOM management and inference
features: it ingests SBOMs and compares against vulnerability
data, checks customizable compliance policies, exposes a fea-
tureful API, and presents its information (and some simpler
functionality) as a web application. None of this truly sets it
apart from the other mentioned tools, but it is possibly the
most complete and mature tool in the space, and gives a good
idea of how SBOM management works right now.

This work is licensed CC BY-SA.

13 2024-07-01

https://github.com/google/osv-scanner
https://anchore.com/platform/
https://cybellum.com/platform/
https://www.cybeats.com/sbom-studio
https://www.synopsys.com/software-integrity/security-testing/software-composition-analysis.html
https://www.synopsys.com/software-integrity/security-testing/software-composition-analysis.html
https://github.com/DependencyTrack/dependency-track
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/

VI. Conclusion

There are a number of separate takeaways readers should
take with them from this paper:

1. Those looking for guidance on compliance are best
served by the NTIA’s “Minimum Elements” [24]
and the BSI’s TR-03183-2 [22].

Which of these documents is more relevant will likely
primarily depend on the intended market. However,
the BSI requirements are slightly more demanding and
seem to set up for the Cyber Resilience Act [21] and, as
the more recent document, may set the tone for further
legislation.

2. For those having to choose a format today: SPDX
and CycloneDX are the relevant formats, with no
clear favorite between them.

Both of these formats serve the SBOM use case and
are supported by a broad variety of tools. While SPDX
has a longer history, CycloneDX iterates more quickly
and may be faster to adopt additional features as they
become useful. While conversion between the formats
is possible and supported by tools, it can lead to loss of
information and preferring one format over the other
may be advisable. Considering that CycloneDX is the
one that is directly supported by Dependency-Track,
the premier free management platform, it can be spec-
ulated that CycloneDX may have a slight edge.

3. Anybody needing to work with SBOMs today
should explore a variety of tools.

The tooling ecosystem is still quite young and in flux.
While this paper gives an overview over the currently
common tools and some of their capabilities and limi-
tations, any tools should be evaluated critically. Rather
than looking for “The One Tool” for everything, users
should look to be comfortable working with SBOMs
and composing tools to fit their needs. As SBOMs are,
ultimately, simply documents, organizations should not
shy away from developing their own tools for working
with them in their own way. The current tooling ecosys-
tem, although very useful, requires further development
and users and especially organizations are encouraged
to contribute to it.

4. Higher-order processes are needed for credibility
of SBOM data and may also simply be required by
customers or regulators.

One such process framework is SLSA, which, using
the in-toto framework, integrates well with SBOM and
is a good fit for the software supply chain security use
case. More generally, the importance of human verifica-
tion and accountability in the process should not be for-

gotten and, consequently, these humans must be sup-
ported with tooling in order to be able to fulfill these
duties effectively.

Be it for security reasons, regulatory requirements, or to en-
sure license compliance, SBOMs will be playing a central part
in securing the “software supply chain” in the near future. It
is up not only to regulators and industry players but also to
open-source contributors to ensure that the use of SBOMs in
this future, rather than becoming a mere formality, meaning-
fully enhances supply chain security.

References

[1] NTIA, “Framing software component transparency: Establishing a common
software bill of material (SBOM),” vol. 12, 2019, [Online]. Available: https://ntia.
gov/files/ntia/publications/framingsbom_20191112.pdf

[2] Red Hat, “What is software supply chain security?.” [Online]. Available: https://
www.redhat.com/en/topics/security/what-is-software-supply-chain-security

[3] Synopsys, “What is software supply chain security?.” [Online]. Available: https://
www.synopsys.com/glossary/what-is-software-supply-chain-security.html

[4] M. Kaczorowski, “Secure at every step: What is software supply chain security
and why does it matter?.” [Online]. Available: https://github.blog/2020-09-02-
secure-your-software-supply-chain-and-protect-against-supply-chain-threats-
github-blog/

[5] iliana etaoin, “There is no 'software supply chain'.” Accessed: Jul. 11, 2022.
[Online]. Available: https://iliana.fyi/blog/software-supply-chain/

[6] Synopsys, “Open Source Security and Risk Analysis (8th edition),” 2023. [Online].
Available: https://www.synopsys.com/software-integrity/resources/analyst-
reports/open-source-security-risk-analysis.html

[7] “The MIT License.” [Online]. Available: https://opensource.org/license/mit/

[8] “CVE-2014-0160..” [Online]. Available: http://cve.mitre.org/cgi-bin/cvename.cgi?
name=CVE-2014-0160

[9] “Heartbleed Report (2017-01).” [Online]. Available: https://web.archive.org/web/
20170123161742/https:/www.shodan.io/report/DCPO7BkV

[10] “Heartbleed Report.” [Online]. Available: https://web.archive.org/web/
20190711082042/https://www.shodan.io/report/0Wew7Zq7

[11] “CVE-2021-44228..” Accessed: Jul. 05, 2023. [Online]. Available: https://cve.mitre.
org/cgi-bin/cvename.cgi?name=cve-2021-44228

[12] R. Hiesgen, M. Nawrocki, T. Schmidt, and M. Wählisch, “The Race to the
Vulnerable: Measuring the Log4j Shell Incident.” 2022.

[13] NCSC-NL, “Log4shell vulnerabilities.” [Online]. Available: https://github.com/
NCSC-NL/log4shell

[14] The White House, “Executive Order on Improving the Nation’s
Cybersecurity.” [Online]. Available: https://www.whitehouse.gov/briefing-room/
presidential-actions/2021/05/12/executive-order-on-improving-the-nations-
cybersecurity/

[15] M. Willett, “Lessons of the SolarWinds hack,” Survival, vol. 63, no. 2, pp. 7–26,
2021, [Online]. Available: https://www.tandfonline.com/doi/full/10.1080/
00396338.2021.1906001

[16] J. Psaki and A. Neuberger, “Press Briefing by Press Secretary Jen Psaki and
Deputy National Security Advisor for Cyber and Emerging Technology Anne
Neuberger.” [Online]. Available: https://www.whitehouse.gov/briefing-room/
press-briefings/2021/02/17/press-briefing-by-press-secretary-jen-psaki-and-
deputy-national-security-advisor-for-cyber-and-emerging-technology-anne-
neuberger-february-17-2021/

[17] Kari Paul and agencies, “SolarWinds hack was work of 'at least 1,000 engineers',
tech executives tell Senate.” [Online]. Available: https://www.theguardian.com/
technology/2021/feb/23/solarwinds-hack-senate-hearing-microsoft

[18] M. Fourné, D. Wermke, W. Enck, S. Fahl, and Y. Acar, “It’s like flossing your teeth:
On the Importance and Challenges of Reproducible Builds for Software Supply

This work is licensed CC BY-SA.

14 2024-07-01

https://ntia.gov/files/ntia/publications/framingsbom_20191112.pdf
https://ntia.gov/files/ntia/publications/framingsbom_20191112.pdf
https://www.redhat.com/en/topics/security/what-is-software-supply-chain-security
https://www.redhat.com/en/topics/security/what-is-software-supply-chain-security
https://www.synopsys.com/glossary/what-is-software-supply-chain-security.html
https://www.synopsys.com/glossary/what-is-software-supply-chain-security.html
https://github.blog/2020-09-02-secure-your-software-supply-chain-and-protect-against-supply-chain-threats-github-blog/
https://github.blog/2020-09-02-secure-your-software-supply-chain-and-protect-against-supply-chain-threats-github-blog/
https://github.blog/2020-09-02-secure-your-software-supply-chain-and-protect-against-supply-chain-threats-github-blog/
https://iliana.fyi/blog/software-supply-chain/
https://www.synopsys.com/software-integrity/resources/analyst-reports/open-source-security-risk-analysis.html
https://www.synopsys.com/software-integrity/resources/analyst-reports/open-source-security-risk-analysis.html
https://opensource.org/license/mit/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-0160
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-0160
https://web.archive.org/web/20170123161742/https:/www.shodan.io/report/DCPO7BkV
https://web.archive.org/web/20170123161742/https:/www.shodan.io/report/DCPO7BkV
https://web.archive.org/web/20190711082042/https://www.shodan.io/report/0Wew7Zq7
https://web.archive.org/web/20190711082042/https://www.shodan.io/report/0Wew7Zq7
https://cve.mitre.org/cgi-bin/cvename.cgi?name=cve-2021-44228
https://cve.mitre.org/cgi-bin/cvename.cgi?name=cve-2021-44228
https://github.com/NCSC-NL/log4shell
https://github.com/NCSC-NL/log4shell
https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity/
https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity/
https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity/
https://www.tandfonline.com/doi/full/10.1080/00396338.2021.1906001
https://www.tandfonline.com/doi/full/10.1080/00396338.2021.1906001
https://www.whitehouse.gov/briefing-room/press-briefings/2021/02/17/press-briefing-by-press-secretary-jen-psaki-and-deputy-national-security-advisor-for-cyber-and-emerging-technology-anne-neuberger-february-17-2021/
https://www.whitehouse.gov/briefing-room/press-briefings/2021/02/17/press-briefing-by-press-secretary-jen-psaki-and-deputy-national-security-advisor-for-cyber-and-emerging-technology-anne-neuberger-february-17-2021/
https://www.whitehouse.gov/briefing-room/press-briefings/2021/02/17/press-briefing-by-press-secretary-jen-psaki-and-deputy-national-security-advisor-for-cyber-and-emerging-technology-anne-neuberger-february-17-2021/
https://www.whitehouse.gov/briefing-room/press-briefings/2021/02/17/press-briefing-by-press-secretary-jen-psaki-and-deputy-national-security-advisor-for-cyber-and-emerging-technology-anne-neuberger-february-17-2021/
https://www.theguardian.com/technology/2021/feb/23/solarwinds-hack-senate-hearing-microsoft
https://www.theguardian.com/technology/2021/feb/23/solarwinds-hack-senate-hearing-microsoft
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/

Chain Security,” 2023, [Online]. Available: https://teamusec.de/pdf/conf-oakland-
fourne23.pdf

[19] K. Thompson, “Reflections on Trusting Trust,” Communications of the ACM, vol.
27, no. 8, pp. 761–763, 1984.

[20] E. R. Royce, “Cyber Supply Chain Management and Transparency Act of 2014.”
Library of Congress, Dec. 04, 2014.

[21] European Commissoin, “Cyber Resilience Act.”

[22] Bundesamt für Sicherheit in der Informationstechnik, “Technische Richtlinie
TR-03183: Cyber-Resilienz-Anforderungen an Hersteller und Produkte.” Jul. 12,
2023.

[23] Bundesamt für Sicherheit in der Informationstechnik, “SBOM-Anforderungen:
TR-03183-2 stärkt Sicherheit in der Software-Lieferkette.” [Online]. Available:
https://www.bsi.bund.de/DE/Service-Navi/Presse/Alle-Meldungen-News/
Meldungen/TR-03183-2-SBOM-Anforderungen.html

[24] NTIA, “The Minimum Elements For a Software Bill of Materials
(SBOM).” [Online]. Available: https://www.ntia.doc.gov/files/ntia/publications/
sbom_minimum_elements_report.pdf

[25] Linux Foundation, “The Software Package Data Exchange® (SPDX®)
Specification Version 2.3.” [Online]. Available: https://spdx.github.io/spdx-spec/v
2.3/

[26] SPDX Project, “What is SPDX?.” Accessed: Sep. 04, 2023. [Online]. Available:
https://spdx.dev/resources/learn/

[27] CycloneDX Project, “History.” Accessed: Jun. 08, 2023. [Online]. Available: https://
cyclonedx.org/about/history/

[28] CycloneDX Project, “CycloneDX Specification Version 1.5.” [Online]. Available:
https://github.com/CycloneDX/specification/releases/tag/1.5

[29] CycloneDX Project, “CycloneDX Specification repository README.” Accessed:
Sep. 04, 2023. [Online]. Available: https://github.com/CycloneDX/specification/
blob/master/README.md

[30] CycloneDX Core Working Group, “AuthoritativeGuide to SBOM.” OWASP, Jun.
25, 2023.

[31] S. Springett, “CycloneDX vs. SPDX.” [Online]. Available: https://www.youtube.
com/watch?v=IQledp8WccU

[32] “Information technology — Software asset management — Part 2: Software
identification tag,” Oct. 2015.

[33] H. Birkholz, J. Fitzgerald-McKay, C. Schmidt, and D. Waltermire, “Concise
Software Identification Tags.” [Online]. Available: https://www.rfc-editor.org/info/
rfc9393

[34] JetBrains, “The State of Developer Ecosystem 2021.” [Online]. Available: https://
www.jetbrains.com/lp/devecosystem-2021/cpp/

[35] D. Stenberg, “NVD makes up vulnerability severity levels.” [Online]. Available:
https://daniel.haxx.se/blog/2023/03/06/nvd-makes-up-vulnerability-severity-
levels/

[36] L. G. A. Rodriguez, J. S. Trazzi, V. Fossaluza, R. Campiolo, and D. M. Batista,
“Analysis of vulnerability disclosure delays from the national vulnerability
database,” 2018. Accessed: Sep. 10, 2023. [Online]. Available: https://sol.sbc.org.
br/index.php/wscdc/article/download/2394/2358

[37] PostgreSQL Global Development Group, “CVE-2020-21469 is not a security
vulnerability.” Accessed: Sep. 13, 2023. [Online]. Available: https://www.
postgresql.org/about/news/cve-2020-21469-is-not-a-security-vulnerability-2701/

[38] GitHub, “About the GitHub Advisory database.” Accessed: Sep. 05, 2023. [Online].
Available: https://docs.github.com/en/code-security/security-advisories/working-
with-global-security-advisories-from-the-github-advisory-database/about-the-
github-advisory-database

[39] J. Bressers and K. Seifried, “Curl and the calamity of CVE.” Open Source Security
Podcast.

[40] MITRE Corporation, “Frequently Asked Questions.” Accessed: Sep. 13, 2023.
[Online]. Available: https://www.cve.org/ResourcesSupport/FAQs

[41] L. Williams, “Trusting Trust: Humans in the Software Supply Chain Loop,” IEEE
Security & Privacy, 2022.

[42] SLSA, “SLSA Specification Version 1.0.” [Online]. Available: https://slsa.dev/spec/v
1.0/

[43] B. Lum, I. Hepworth, and M. Kydyraliev, “SBOM + SLSA: Accelerating SBOM
success with the help of SLSA.” Accessed: Jul. 22, 2023. [Online]. Available:
https://slsa.dev/blog/2022/05/slsa-sbom

[44] A. Sirish, “in-toto and SLSA.” [Online]. Available: https://slsa.dev/blog/2023/05/in-
toto-and-slsa

[45] SLSA, “Software attestations.” Accessed: Jul. 11, 2023. [Online]. Available: https://
slsa.dev/attestation-model

[46] A. Sirish, “In-Toto: Attestations and More for Software Supply Chain
Security.” [Online]. Available: https://youtu.be/ezV_oWBPqKw

[47] C. Kennedy and N. Schwartz, “Securing the Software Supply Chain with SBOM
and Attestation.” [Online]. Available: https://youtu.be/wX6aTZfpJv0

[48] NTIA, “Vulnerability Exploitability eXchange (VEX) — Use Cases.”

[49] P. H. Salus, A Quarter-Century of Unix. Addison-Wesley, 1994.

This work is licensed CC BY-SA.

15 2024-07-01

https://teamusec.de/pdf/conf-oakland-fourne23.pdf
https://teamusec.de/pdf/conf-oakland-fourne23.pdf
https://www.bsi.bund.de/DE/Service-Navi/Presse/Alle-Meldungen-News/Meldungen/TR-03183-2-SBOM-Anforderungen.html
https://www.bsi.bund.de/DE/Service-Navi/Presse/Alle-Meldungen-News/Meldungen/TR-03183-2-SBOM-Anforderungen.html
https://www.ntia.doc.gov/files/ntia/publications/sbom_minimum_elements_report.pdf
https://www.ntia.doc.gov/files/ntia/publications/sbom_minimum_elements_report.pdf
https://spdx.github.io/spdx-spec/v2.3/
https://spdx.github.io/spdx-spec/v2.3/
https://spdx.dev/resources/learn/
https://cyclonedx.org/about/history/
https://cyclonedx.org/about/history/
https://github.com/CycloneDX/specification/releases/tag/1.5
https://github.com/CycloneDX/specification/blob/master/README.md
https://github.com/CycloneDX/specification/blob/master/README.md
https://www.youtube.com/watch?v=IQledp8WccU
https://www.youtube.com/watch?v=IQledp8WccU
https://www.rfc-editor.org/info/rfc9393
https://www.rfc-editor.org/info/rfc9393
https://www.jetbrains.com/lp/devecosystem-2021/cpp/
https://www.jetbrains.com/lp/devecosystem-2021/cpp/
https://daniel.haxx.se/blog/2023/03/06/nvd-makes-up-vulnerability-severity-levels/
https://daniel.haxx.se/blog/2023/03/06/nvd-makes-up-vulnerability-severity-levels/
https://sol.sbc.org.br/index.php/wscdc/article/download/2394/2358
https://sol.sbc.org.br/index.php/wscdc/article/download/2394/2358
https://www.postgresql.org/about/news/cve-2020-21469-is-not-a-security-vulnerability-2701/
https://www.postgresql.org/about/news/cve-2020-21469-is-not-a-security-vulnerability-2701/
https://docs.github.com/en/code-security/security-advisories/working-with-global-security-advisories-from-the-github-advisory-database/about-the-github-advisory-database
https://docs.github.com/en/code-security/security-advisories/working-with-global-security-advisories-from-the-github-advisory-database/about-the-github-advisory-database
https://docs.github.com/en/code-security/security-advisories/working-with-global-security-advisories-from-the-github-advisory-database/about-the-github-advisory-database
https://www.cve.org/ResourcesSupport/FAQs
https://slsa.dev/spec/v1.0/
https://slsa.dev/spec/v1.0/
https://slsa.dev/blog/2022/05/slsa-sbom
https://slsa.dev/blog/2023/05/in-toto-and-slsa
https://slsa.dev/blog/2023/05/in-toto-and-slsa
https://slsa.dev/attestation-model
https://slsa.dev/attestation-model
https://youtu.be/ezV_oWBPqKw
https://youtu.be/wX6aTZfpJv0
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/

	Introduction
	Background
	A "Software Supply Chain"
	Threats on the Supply Chain
	The Case for SBOM
	Contents of SBOMs

	Formats
	SPDX
	CycloneDX
	SWID
	Miscellaneous Formats

	Practices and Processes
	Operations
	Vulnerability Scanning
	Beyond SBOM

	Tooling
	Generation
	Conversion, Merging, and Editing
	Vulnerability Analysis
	Management

	Conclusion
	References

